Case Study HEC-RAS Model Utilization for Fish Habitat Assessment Studies

Dr. AhmadReza Ghavasieh and Ion Corbu Corbu Consulting

Presentation at the OWA Conference - Niagara-on-the-Lake October 22, 2012

Slide No. 1

Agenda

- **1. Introduction**
- 2. Field Investigations
- **3. HEC-RAS Model Overview**
- 4. Use of HEC-RAS for fish habitat studies
- **5.** Conclusions

Note: Material for the presentation was provided by courtesy of AXOR



Namewaminikan Hydro Project Location

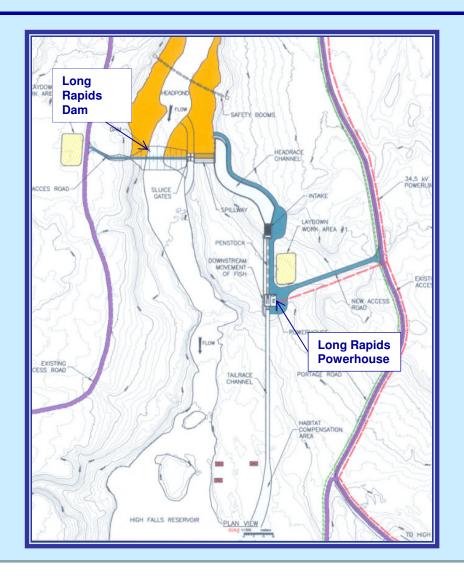
Development Sites

River sections studied for fish habitat loss/gain in post development conditions:

- **1.** Twin Falls North Channel downstream of the control weir
- 2. Twin Falls South Channel downstream of the hydroelectric power plant
- **3.** Long Rapids downstream of the dam
- 4. Long Rapids upstream of the dam

Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012

Map Source: Google earth

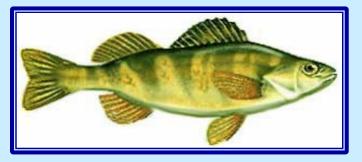

Twin Falls Site Characteristics

Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012

Long Rapids Site Characteristics


Field Investigations

- Fish and Fish Habitat
- Topography, Bathymetry, and LiDAR surveys
- Aerial Photographs
- Hydrologic Measurements

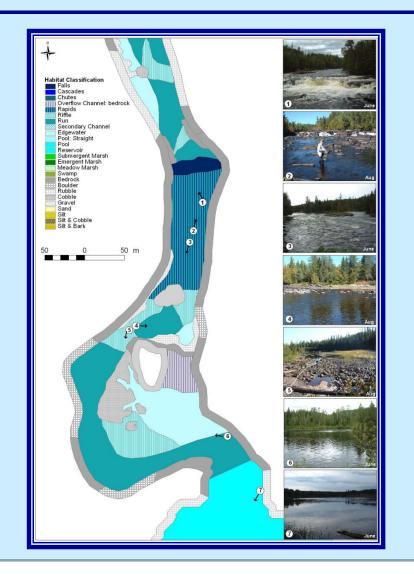


Fish Species in Namewaminikan River

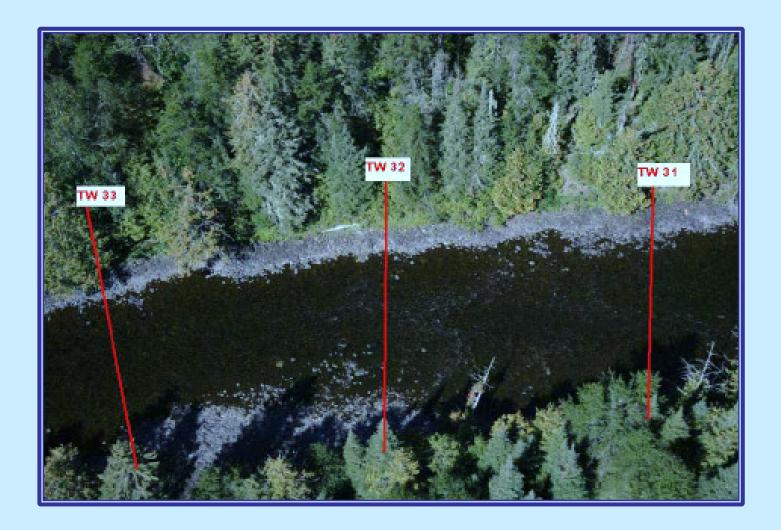
Walleye

Yellow Perch

Northern Pike

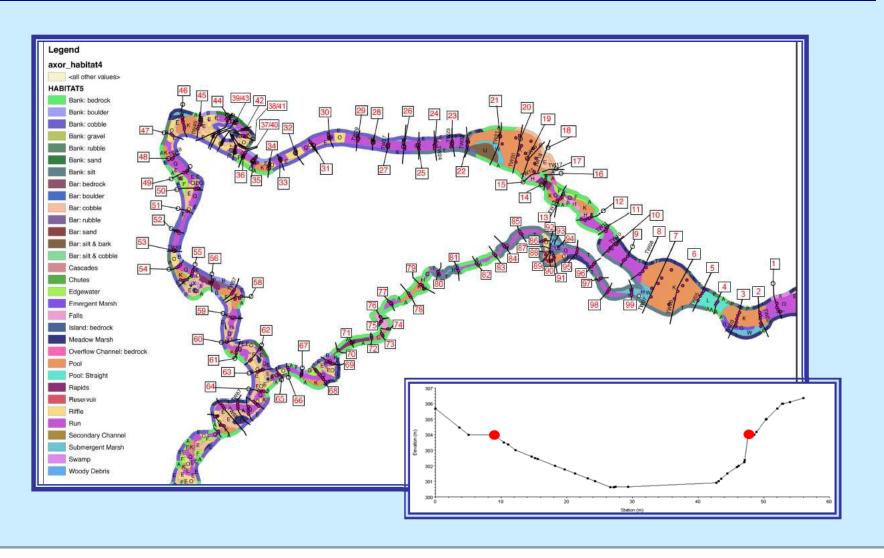


White Sucker


Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012

Example of Habitat Mapping

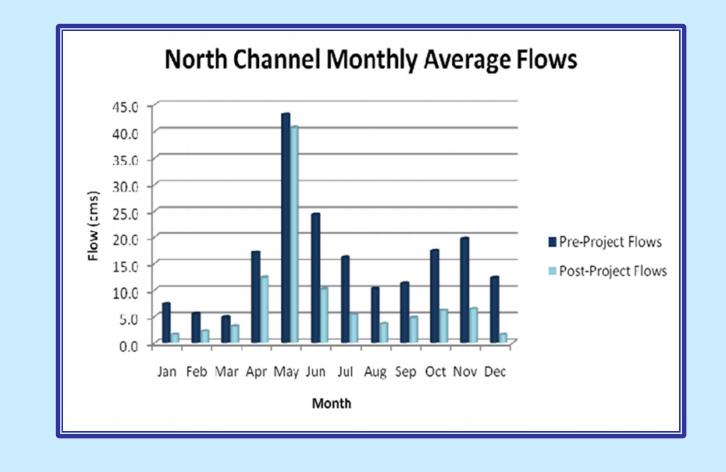
Aerial photo with overlay of X-Sections



Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012

Slide No. 10

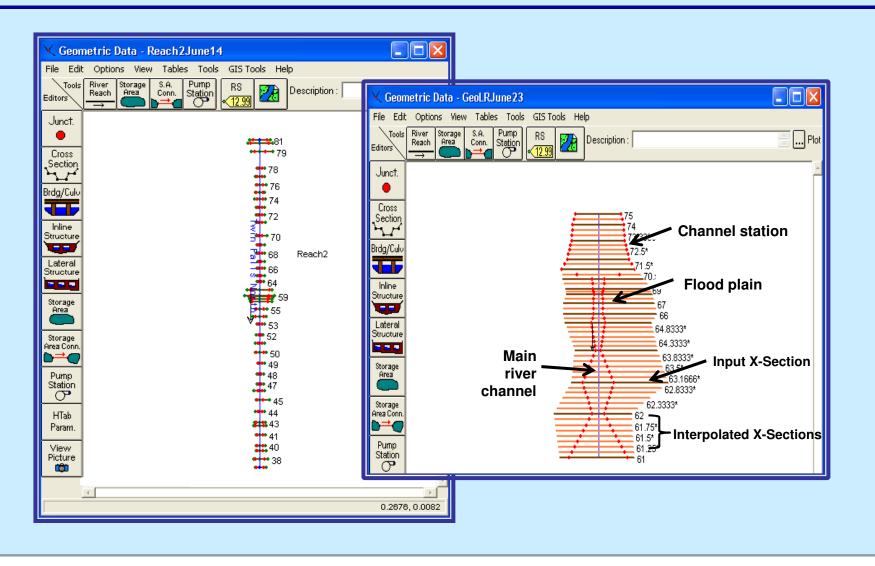
Twin Falls Site with X-Sections



Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012

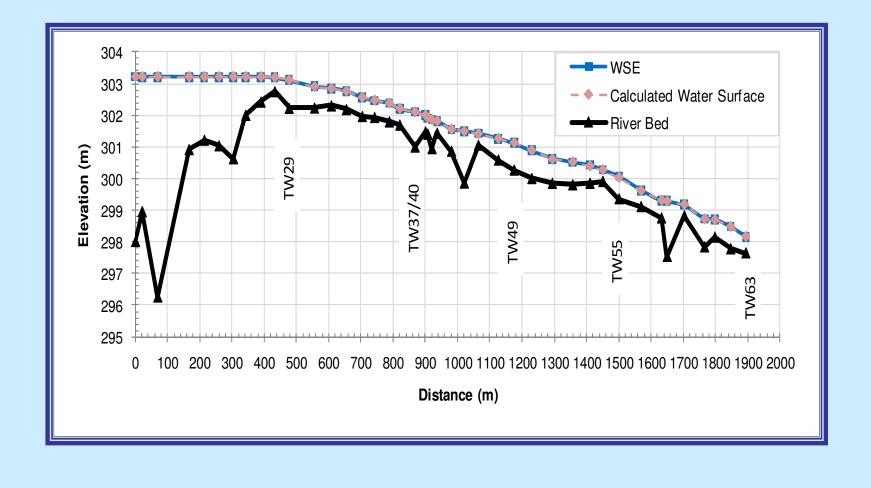
Slide No. 11

Hydrology



HEC-RAS Model Setup

- Preparing the GIS files with X-Section geometry
- Elimination of model-incompatible X-Sections
- Eliminating excess points in X-sections
- Defining channel stations
- Assuming initial Manning Coefficient values
- Interpolating between X-sections
- Stability tests
- Model calibration



HEC-RAS representation of X- Sections

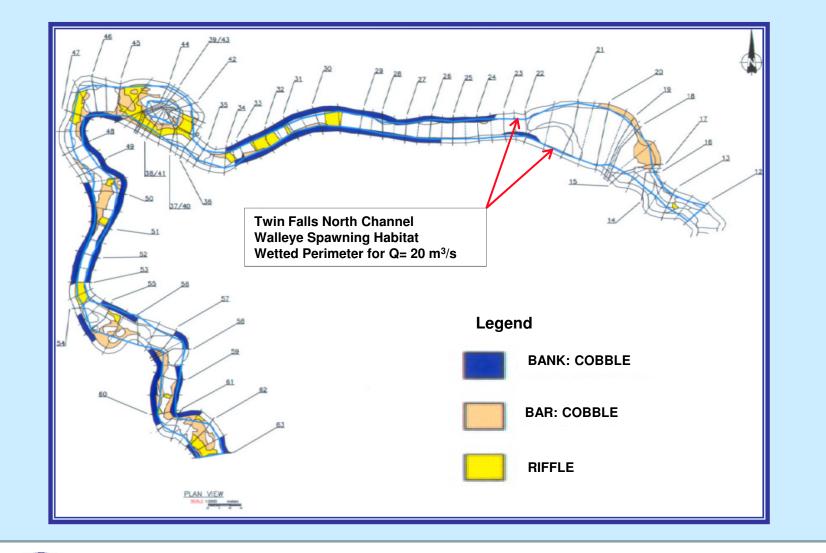
Model Calibration

Example of model output

River Station	Flow depth (m)	Velocity (m/s)	Flow Area (m ²)	Top Width (m)	Froude Number
TW34	0.32	0.26	3.80	17.32	0.18
TW35	0.36	0.34	2.99	16.89	0.25
TW36	0.31	0.55	1.82	15.97	0.52
TW37/40	0.78	0.08	12.14	30.22	0.04
TW38/41	0.27	0.48	2.09	14.16	0.40
TW42	0.27	0.44	2.29	10.56	0.30

Note: The highlighted columns will be used in the fish habitat study

HEC-RAS X-Section with velocities

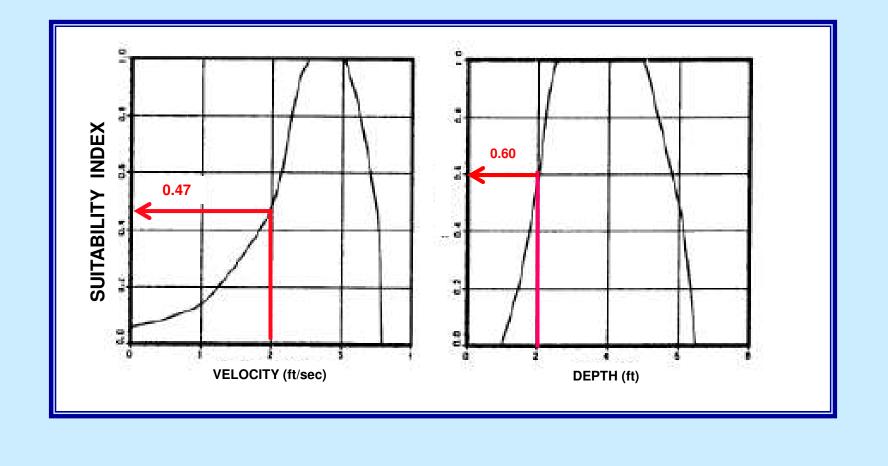


X-Section TW-47; Q= 20 m³/s

The HEC-RAS <u>flow distribution</u> option was used to determine velocities and hydraulic depth in each "slice" of each X-Section.

HEC-RAS use for calculating wetted areas

Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012


Slide No. 18

Flows for loss/gain habitat analysis

Walleye life stage habitats	Period	Median Pre-project flows (m ³ /s)	Median Post-project flows (m ³ /s)
Spawning habitats	Mid-April to Mid-May	34.3	20.6
Adult habitats	End of June to end of October	10.7	2
Juvenile habitats	End of June to end of October	10.7	2

Suitability Index Curves: Spawning Habitat

Presentation at the OWA Conference – Niagara-on-the-Lake October 22, 2012

Fish Habitat Study Methodology

- 1. Run HEC-RAS for selected walleye habitats in pre and post development conditions
- 2. Use model generated velocities and depths for each vertical slice to produce the corresponding Suitability Indices SI_v, Si_d
- 3. Calculate the Average SI for each slice of each X-Section
- 4. Calculate the Global SI (GSI) for each X-Section
- 5. Determine the Habitat Surface Area (HSA) for each X-Section
- 6. Calculate the product of GSI*HSA for each X-Section
- 7. Calculate the overall Suitability Area for the given river reach and habitat
- 8. Determine the post development loss/gain in habitat Suitability Areas

Fish Habitat Study Results

	Pre-project conditions		Post-project conditions		Habitat
Selected Habitats	Median flow (m ³ /s)	Habitat area (m ²)	Median flow (m ³ /s)	Habitat area (m ²)	loss/gain area (m ²)
Spawning	34.3	12,425	20.6	9,092	-3,333
Adult	10.7	16,983	2.0	16,356	-627
Juvenile	10.7	17,778	2.0	15,363	-2,415

Result: A habitat compensation plan is required

Estimated MIFs

Season	Period	Walleye life stage	Twin Falls MIFs (m ³ /s)
Early Spring	Mid-April to Mid-May	Spawning	5
Late Spring	Mid-May to end of June	Incubation and larval drift	3.5
Summer / Fall	End of June to end of October	Nursery/Adult and Juvenile rearing	2
Winter	November to Mid-April	Overwintering	1

HEC-RAS was run with the above MIF values. The model generated water depths and velocities in each vertical slice of each river X-section and confirmed that the estimated MIF flows are adequate for meeting walleye requirements.

Conclusions

- HEC-RAS is a robust tool for simulating hydraulic conditions in open channels
- HEC-RAS can be used reliably for fish habitat studies and represents a good fit when used in conjunction with the Habitat Suitability Indices (HSI) methodology
- HEC-RAS can be used to confirm the seasonal MIFs estimates which protect fish resources and the entire aquatic ecosystem, year-round
- This study indicated that the proponent is required to provide a fish habitat compensation plan to mitigate the expected habitat losses in this reach of the river

Thanks

- The authors would like to thank Namewaminikan Hydro and AXOR Group staff, for the numerous significant contributions made to the studies referred to in this presentation
- Special thanks are extended to:
 - Normand Bergeron (AXOR),
 - George Visser (AXOR) and Tony Gallo (KGS), and
 - Robert Foster (Northern Bioscience)
- More information can be obtained from:
 - Ion Corbu, Corbu Consulting: <u>icorbu@corbuconsulting.com</u>
 - Simon Gourdeau, Namewaminikan Hydro: gourdeau@axor.com

